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The derivation of equations of state for fluid phases of a partially ionized gas or plasma is addressed from
a fundamental point of view. The results of the Thomas-Fermi model always yield pressures which are less
than or equal to that of an ideal Fermi gas. On the other hand, the spherical cellular model shows significant
“overpressure” relative to the ideal Fermi gas in certain regions of low density and low temperature. This effect
is studied in considerable detail. A nonthermodynamic region, more or less overlapping the regions of over-
pressure, is found. It is characterized by a negative specific heat at constant volume. An independent electron
model within a Z-electron cell is employed. The inadequacy of the wave function in the low-density, low-
temperature nonthermodynamic region is shown to be the cause of this overpressure. Numerical examples of
the theory for several elements �Li, N, Al, K, and Er� are reported. These results reduce in various limits of
temperature and density to the expected behavior, except in the aforementioned region.
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I. INTRODUCTION AND SUMMARY

In a series of papers �1,2� I have investigated from a fun-
damental point of view the thermodynamic properties of ion-
electron systems with emphasis on the single-phase region.
�There was a miscoding in �2� which was corrected in �3�.�
This series of papers has, for a starting point, the observation
that the exact solution for the ideal gas can be reformulated
in terms of calculations in a cubic cell �or for that matter for
any cell of a Bravais lattice�. The next step was the approxi-
mation of using a spherical cell instead. For nuclear charge
greater than unity, an independent electron model is used. A
list of all the approximations is given in Appendix B of �2�.
In this paper, and in the previous ones, the dipole-dipole
interaction will not be considered. A discussion of a large
number of alternative approaches is given in �1�. In addition,
in collaboration with Johnson, I have studied some of the
thermodynamic quantities in terms of a series expansion in
the electron charge e about the ideal Fermi gas �4–6�. �The
above-mentioned miscoding affected some of the numerical
results in �6�. These were corrected in �7�.

The most popular of the alternative approaches is prob-
ably the Thomas-Fermi model �8–13� and its Thomas-Fermi-
Dirac extension �14,15� which includes the exchange inter-
action. In this paper I notice that the Thomas-Fermi model
always produces pressures that are less than or equal to the
ideal, Fermi gas pressure. On the other hand, the spherical
cellular model in certain cool, dilute regions produces pres-
sures that significantly exceed the ideal gas pressure. This
effect has been proven to be possible �16� for certain density-
dependent potentials. I investigate this phenomenon in some
detail.

In Sec. II, I give a brief summary of the formulation of the
cellular model. In Sec. III, I illustrate some examples of
cases where the pressure computed for the spherical cellular
model is much greater than the ideal gas pressure. This result
is contrasted with those of the Thomas-Fermi model, which
never gives a pressure higher than the ideal gas. In Sec. IV, I
find that a negative specific heat is generated in some regions
by the spherical cellular model. I give a construction, which

is analogous to the Maxwell construction, to delineate the
nonthermodynamic region. In Sec. V, I review some of the
behaviors of various quantities which are computed from the
spherical cellular model and are relevant to the “overpres-
sure” and the nonthermodynamic behavior of this model. In
the last section, I conclude that �i� the very large overpres-
sures seem to occur mainly in the nonthermodynamic region
and so are not physical; �ii� there is a rather large region
where the spherical cellular model can be expected to pro-
vide a reasonable approximation to the proper equation of
state; and �iii� the spherical cellular model for hydrogen has
no nonthermodynamic regions.

II. FORMULATION OF THE CELLULAR MODEL

In a previous paper �1� I pointed out that one can divide
all space into cubical cells. The reciprocal lattice is again
cubic. For the ideal Fermi gas, if one sums over all the ei-
genvalues of the Hamiltonian in a cell and integrates over the
first Brillouin zone, this procedure amounts to a simple rear-
rangement of the integrals in the usual formulation �17� of
the exact solution for the thermodynamic properties of the
ideal Fermi gas. The boundary conditions for the determina-
tion of the eigenvalues are the usual ones, i.e., the wave
function and its derivative are continuous at the surface of
the cell. The cells in this cellular model are stacked and have
the same wave function inside each cell, which gives mean-
ing to the continuity conditions just stated.

The quantum statistical mechanics formulas on which the
usual formulation is based are given for Fermi-Dirac statis-
tics. The grand canonical partition function is

Q��,T� = �
N=0

�

exp�N���,T�/�kT��QN��,T�

= �
j

„1 + exp�����,T� − � j�/�kT��… , �2.1�

where � is the volume, T is the absolute temperature, the � j’s
are the state energies, and k is Boltzmann’s constant. Differ-
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entiating by � �the chemical potential� determines � as the
solution of

N = �
j

1

exp��� j − ��/�kT�� + 1
, �2.2�

where N is the average number of occupied states. The
Helmholtz free energy is then given as

A��,T� = N���,T� − kT�
j

ln„1 + exp�����,T� − � j�/�kT��… .

�2.3�

From it, one can deduce the pressure and internal energy as

p� = −
1

3
rb	 �A

�rb
	

T

= −
1

3�
j

rb	 �� j

�rb
	

T

exp��� j − ��/�kT�� + 1
,

�2.4�

U = A − T	 �A

�T
	

�

= �
j

� j − T	 �� j

�T
	

�

exp��� j − ��/�kT�� + 1
, �2.5�

where rb characterizes the linear size of the cell. For a spheri-
cal cell, it is the radius of the sphere.

Specifically the usual formulation of the ideal Fermi gas
is, with Z=1,

� =
ZN

2�

 h2

2�mkT
�3/2

= f3/2�z� =
2

��



0

� zy1/2e−ydy

1 + ze−y ,

�2.6�

where � is the de Broglie density, ZN is the number of elec-
trons, z is the fugacity, h is Planck’s constant, and m is the
electron mass. The pressure p is given by

p�

ZNkT
=

f5/2�z�
f3/2�z�

, f5/2�z� =
4

3��



0

� zy3/2e−ydy

1 + ze−y . �2.7�

Let us reexpress these equations in terms of y
=	2k�2 / �2mkT� and a3=� / �ZN�. The primitive-cell edge in
the reciprocal lattice is 2� /a. If one does some re-arranging
of the integrals, then �2.6� becomes

1 = 2 �
j1=−�

+�

�
j2=−�

+�

�
j3=−�

+� 
 a

2�
�3



 
 

−�/a

�/a dk�

1 + z−1 exp� 	2

2mkT

k� +

2�

a
J� �2� ,

�2.8�

where the steps in J� are unity. Equation �2.7� becomes

p�

ZNkT
= 2 �

j1=−�

+�

�
j2=−�

+�

�
j3=−�

+� 
 a

2�
�3



 
 

−�/a

�/a
	2

2mkT

k� +

2�

a
J� �2

dk�

1 + z−1 exp� 	2

2mkT

k� +

2�

a
J� �2� .

�2.9�

In that same paper �1�, there is an investigation of the use of
spherical cells instead of cubic cells �or for that matter cells
based on any Bravais lattice�. Since the term −i	2k� ·�� which
arises in the Hamiltonian is not diagonal in spherical coordi-
nates, a certain additional approximation is required by nu-
merical expediency. See �1�, Sec. IV. The results are that the
pressure for the ideal Fermi gas is accurate to within about
−2.2 to 4.9%. Some additional modifications were made to
ensure that the leading-order corrections to the ideal gas re-
sults are given correctly and to account for the exchange
effects. These equations can be used to investigate the behav-
ior of various thermodynamic quantities for hydrogen.

In order to proceed to various other elements, the direct
application of these ideas results in having Z �more than one�
electrons in each cell with a single nucleus of charge +Ze.
The direct generalization of �1� �5.1� leads to the equation

��
j=1

Z 
 	2

2m
�k2 − 2ik� · �� j − � j

2� −
Ze2

rj
�

+
1

2�
l�j

Z
e2

�r�l − r� j�
��l,��r�1, . . . ,r�Z� = El,��l,��r�1, . . . ,r�Z� ,

�2.10�

where �� j means differentiation with respect to r� j. The same

( )

FIG. 1. Thomas-Fermi model pressure divided by the ideal gas
pressure vs density for the case of aluminum �Z=13�.
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value of k� is used in exp�ik� ·r� j� for all r� j in order to maintain
the antisymmetry of the wave function.

These problems �2.10� are numerically intractable, so in
�2� the independent electron approximation is introduced.
The equations now become

� 	2

2m�
�k2 − 2ik� · �� − �2� −

e2Z−1/3v�rb,T,r/rb�
r

−
e2Z−1/3

2rb

 r

rb
�2

F
 y2

Z
���l,��r�� = El,��k���l,��r�� ,

�2.11�

with the boundary conditions

n� · �� �even�Z1/3r̂�b� = 0, �odd�Z1/3r̂�b� = 0, �2.12�

where n� is the unit vector normal to the sphere.

r̂b = 
 3A
4�N0Z


�1/3

= 7.344 995 
 10−9
 A
Z

�1/3

cm,

�2.13�

where A is the gram atomic weight, N0 is Avogadro’s num-
ber, and y2=Ze2 / �rbkT� is a dimensionless strength of the
Coulomb interaction. r̂b is the radius of the spherical cell rb
over Z1/3. The effective mass m� is defined in �1�. The F term
relates to the electron-electron repulsion. For an alternate
approach, see, for example, �18�. In the spherical cell ap-
proximation, the normalization condition that determines the
chemical potential �=kT ln z is

1 = 3�
l=0

�

�2l + 1��
n=0

� 

0

1

d�̂ �̂2
 1

1 + exp��1.5����2/3�el,n + �1/2��1 + m�/m���̂2 + �̂�̂n+��l+1�/2��� − �/kT�

+
1

1 + exp��1.5����2/3�el,n + �1/2��1 + m�/m���̂2 − �̂�̂n+��l+1�/2��� − �/kT�
� , �2.14�

where now the dimensionless form of the eigenvalue is

el,n =
2m�l,n�0��

	2kB
2 , �2.15�

where kB= �9� /2�1/3 /rb. The �̂n+��l+1�/2� are defined in �1�.
For the corresponding �,

�l,��k�� =
1

2

1 +

m�

m
��El,��k�� −

1

2
��l,��r���
Z2/3e2

r

−
e2v�rb,T,r/rb�Z−1/3

r
���l,��r����

−
1

2

1 −

m�

m
���l,��r���

v�rb,T,r/rb�e2Z−1/3

r
��l,��r���

+
m�e2Z−1/3

4mrb
F
 y2

Z
���l,��r���

r2

rb
2 ��l,��r��� + �� .

�2.16�

where the state-independent part is

��� = Z−1/3� 3e2

10rb
g�y2� +

3Ze2

5rb
F�y2Z�

+
e2

rb
F
 y2

Z
��3

4
− 
 3Z

��
�1/3

f1/2„z���…�� ,

��anti-� = Z−1/3� 3e2

10rb
g�y2� +

3Ze2

5rb
F�y2Z� +

3e2

4rb
F
 y2

Z
�� .

�2.17�

For the antiparallel case m� /m=1 and I drop the f1/2 term.
m�, as explained in �1�, is the effective mass in the parallel
spin case. Account has been taken of the double counting of
the electron-electron interactions.

The potential is determined self-consistently by the use of
Poisson’s equation, which leads to

v�rb,T,r/rb� = 1 + 
Z − 1

Z
�rb


�r/rb�

1 
1 −
r

�rb
�D�rb,T,��d� .

�2.18�

D�rb ,T ,�� is the electron density. For the case of a uniform
density D�rb ,T ,r /rb�=3Zr2 /rb

3, and v�rb ,T ,r /rb�=Z+ 1
2 �Z

−1���r /rb�3−3�r /rb��. I use this value to start the iteration
procedure to find the solution of these equations. The full
details are found in �2�, and Appendix B of that paper gives
a catalog of all the approximations.

III. OVERPRESSURES

As has been noticed �see, for example, �19��, the pressure
of the Thomas-Fermi model is always less than or equal to
that of the ideal gas, as seen in Fig. 1. It is sufficient to
consider just one element for this purpose because of the
similarity considerations derived in �10�. On the other hand,
the pressure computed for the spherical cellular model is
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sometimes greater and occasionally considerable greater than
that of the ideal gas, as seen in Fig. 2. This overpressure
merits considerable investigation to see whether it is an arti-
fact of the theory, or reflects real behavior. There are some
experimental results �20� on aluminum for 

=0.1 and 0.3 gm /cm3 at temperatures of a few eV. They
indicate a system of very little ionization with the pressure
less than that of an ideal gas of ions and electrons. This effect
does not occur in hydrogen. The overpressure effect does not
occur exclusively in the two-phase region. This fact is illus-
trated in Fig. 3, which shows for potassium the p= pideal line
and the phase boundary. To study this situation for Z�1, I
have plotted the internal energy vs the temperature for fixed
density. One example is given by in Fig. 4. A further example
is given by the isotherms of the spherical cellular model
showing the internal energy versus volume for lithium �Fig.
5�. Notice that, while the 3 eV isotherm is higher than the
others for low volume, it is lower than the others for high
volume.

IV. CONSTRUCTION

An analogous situation occurs in the study of the van der
Waals equation of state. Here when the pressure is plotted
versus the volume there is a violation of the thermodynamic
requirement that ��p /�V�T�0. The solution to this problem is
the Maxwell construction. This condition is imposed by the
insertion of a line of constant pressure which connects two
points �points 1 and 2� on the van der Waals curve. The
requirements are that p�V1�= p�V2� and that there is no net
work done. That is to say, �V1

V2p dV=0, the famous equal-
areas law.

In the case illustrated in Fig. 4 there is a negative specific
heat at constant density �volume�, which is a violation of
thermodynamics as the specific heat at constant volume CV is

a principal specific heat. I propose an analogous construction
to that of Maxwell. First, note the thermodynamic relations

	 �A

�T
	

V

= − S, 	 �U

�T
	

V

= T	 �S

�T
	

V

= CV = − T	 �2A

�2T
	

V

,

�4.1�

where U is the internal energy, and S is the entropy. The
condition that no work be done is that U�T1 ,V�=U�T2 ,V�.
The condition that the slopes of the Helmholz free energy A

( )

FIG. 2. Spherical cellular model pressure divided by the ideal
gas pressure vs density for the case of aluminum �Z=13�. FIG. 3. Spherical cellular model plot of the temperature vs the

density of the boundary of the region where the pressure is greater
than that the ideal gas. Also plotted is the phase boundary of the
two-phase region.

FIG. 4. Spherical cellular model internal energy for 
=1 as a
function of temperature.
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with respect to temperature be equal is S�T1 ,V�=S�T2 ,V�, or



T1

T2 dt

t
	 �U�t,V�

�t
	

V

= 0. �4.2�

�Note that this latter condition is independent of an additive
constant to the internal energy so I do not need to invoke the
third law of thermodynamics.� These conditions, in a way
analogous to the Maxwell construction, define a region in
which the spherical cellular model behaves in a nonthermo-
dynamic fashion. I illustrate this for lithium in Fig. 6. The
boundaries of the nonthermodynamic regions seem to col-
lapse when plotted as a function Z0.2y of �. See Fig. 7. Hy-
drogen is an exception as it does not have a nonthermody-
namic region. There is some indication from the results for
lithium that values of � greater than some minimum value do
not show nonthermodynamic behavior. For lithium this value
is about 8. That is to say, for a fixed value of � greater than
a certain value, no y will be in a nonthermodynamic region.
Likewise, referring to Fig. 6 for any fixed 
 for T greater
than a certain value, there will not be any nonthermodynamic
regions. I expect that results of this character will be valid for
the other elements as well. This idea is in line with the fact
that for very high densities and/or very high temperatures the
kinetic energy is much more important than the potential
energy.

V. BEHAVIOR OF THE SPHERICAL CELLULAR MODEL

It is not that the pressure behaves wildly in the spherical
cellular model. On the contrary, it sometimes simply fails to
drop as expected when the temperature decreases at fixed
density. I illustrate this in Fig. 8. Since Fig. 8 is at constant
density, i.e., constant volume, the low-temperature limit of

the pressure can be thought of as proportional to

�rb���1�0��� / ��rb��, which is clearly too large. As I have
shown in Fig. 18 of �2� for low densities,
rb�v�rb ,T ,r /rb� /�rb is positive. Thus I expect, and I do find,
p / pideal�1. For high densities, on the other hand, this quan-
tity is negative, in line with p / pideal�1.

The general pattern is seen for all the elements I have
checked �except for hydrogen where the nonthermodynamic
region does not appear�. The curves for the boundaries of the

( )

FIG. 5. Spherical cellular model lithium isotherms showing the
internal energy as a function of volume, reflecting the nonthermo-
dynamic region.

FIG. 6. Spherical cellular model for lithium showing, as a func-
tion of volume and temperature, the nonthermodynamic region.

FIG. 7. Collapse of the data for the boundary of the nonthermo-
dynamic region in the �-y plane. It is illustrated for lithium, potas-
sium, and erbium. The short-dashed line is almost completely ob-
scured by the solid line and it runs from the left border to �=0.3.
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nonthermodynamic region, the two-phase region, and the re-
gion where the spherical cellular model pressure exceeds that
of the ideal Fermi gas are shown for erbium in Fig. 9.

It is of interest to see the behavior of the pressure ratio on
the boundary of the nonthermodynamic region. I illustrate
this in Fig. 10 for potassium. There is very little overpressure
on the high-temperature side in this case.vSince the nonther-
modynamic behavior does not occur in hydrogen, I look to
the following two approximations for an explanation of its
occurrence. First, I have made the intra-atom independent

electron approximation, �2.11�. Second, instead of computing
Z different potentials v by subtracting the contribution from
D in �2.18� of the wave function of each state, I have com-
puted by simply subtracting the 1 /Z fraction of the total,
thereby obtaining only one .

An important consideration is the fact that the solution
using �2.10� for k� =0� has no nonthermodynamic regions �21�.
The difference between �2.10� for k� =0� and k� �0� is simply
the addition of k�-dependent terms to the Hamiltonian and the
multiplication of the wave function by a factor of
� j=1

Z exp�ik� ·r� j�. These changes do not change the eigenvalues
of the Schrödinger equation. In addition, they do not change
the electron density either. Thus, while this result means that
hydrogen is proven free from nonthermodynamic regions,
this is not the case for the independent electron model �2.11�
for Z�1. �Lieb’s results �21� do not, of course, preclude the
existence of two-phase regions.�

The region of overpressure occurs for small temperature
and density. For this reason, I use as an illustration the be-

havior of the lowest ��k� =0��. If I do not include the
�T��� j /�T��� term in �2.5�, then for temperatures small com-
pared to the differences between the lowest eigenvalue and
the next eigenvalue for �2.11� and �2.12�, then the modified
Eq. �2.5� gives the lowest �.

The quantities on which the pressure depends �Eq. �2.4��
are the �’s. For lithium along the T=0.5 eV isotherm, I il-
lustrate the lowest � vs 
 in Fig. 11. The pressure is a sum of

the contribution of the ��k� =0��’s and the integrals over the
first Brillouin zone. These latter are like the kinetic energy.

As is clear for Figs. 2 and 11, the derivative of ��k� =0�� is
positive when p / pideal�1 and negative otherwise. This fea-
ture illustrates the mechanism which creates the overpres-
sure.

FIG. 8. Spherical cellular model pressure and the ideal Fermi
gas pressure for lithium at fixed density as a function of
temperature.

FIG. 9. Spherical cellular model for erbium showing the bound-
aries of the three regions.

FIG. 10. Spherical cellular model temperature on the boundary
of the nonthermodynamic region for potassium. The dotted line
corresponds to a value of unity for the pressure ratio.
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Physically, at high densities, the energy eigenvalues are
lowered because the electrons are forced to be close to the
nucleus, and at low densities the energy eigenvalues decrease
with decreasing densities as the volume constraint is re-
moved �Fig. 11�. This latter remark is valid when the tem-
perature is not so high as to overwhelm the behavior illus-
trated by the lowest �. Of course, at higher temperatures, the
other eigenvalues contribute in an important way. Finally,
physically, at very low densities, because of entropy, there is
total ionization and p / pideal should go to unity.

The lowest value of � is the lowest single-particle energy
state which results from the intra-atom independent electron
approxiation. This value of � is to be compared with the total
ionization energy. I have used the results of Moore �22�. An
illustration of the comparison between the experimental data
and the spherical cellular model data for nitrogen is shown in
Fig. 12. The results for the spherical cellular model have
settled down to the lowest � within graphical accuracy for
T�2 eV. As can be seen in this figure, the intra-atom inde-
pendent electron approximation used in the spherical cellular
model leads to a much lower � than the experimental total
ionization energy. The independent electron approximation
equation for T→0 is a Hartree-type equation. Figure 11
shows this equation to be inadequate. This inadequacy is
what leads to the nonthermodynamic behavior.

At very low densities, the electron behavior as given by
the independent electron approximation does not give a
proper accounting of the electron-electron repulsion. As seen
in the potassium electron density plot, Fig. 13, the predicted
size of the potassium atom is much too small by about two
orders of magnitude. The entire atom is almost completely
inside one Bohr radius. In this type of case every electron in
the independent electron approximation experiences the
strong attraction near the nucleus, which leads to a much
more negative potential energy than there should be, as
shown in Fig. 12. So the electrons are moving very rapidly,

which creates much too high a pressure. It is this feature, i.e.,
that the spherical cellular model maintains too small an
atomic size, which accounts for the behavior seen in Fig. 8.
The Thomas-Fermi model also leads to excessively high
pressures as T goes to zero, but to a lesser extent.

I point out that at high densities one expects the electron
distribution to be relatively uniform. Consequently the po-
tential funciton should be about the same as that computed in

( )

FIG. 11. The lowest ��k� =0�� versus density 
.
FIG. 12. Comparison of the lowest ��k� =0�� of the spherical cel-

lular model and the experimental total ionization potential for nitro-
gen. The variation for T�3 eV is due to the dependence of the
Schrödinger equation on y and �, which effects go to zero for small
T.

FIG. 13. Electron density, as a function of radius, for a sample
of potassium.
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�2� for a uniform electron distribution. This result does in-
deed hold true as I illustrate in Fig. 14. The spherical cellular
model results in this figure correspond to a small concentra-
tion of the electrons near the ion, which is not unreasonable.
For low densities, the potential v drops much more rapidly
with r because the electrons are no longer uniformly distrib-
uted but cluster near the ion.

I note �23� that the total experimental ionization energy
�except for Z=1� is fitted fairly well �as far as the data goes
�22�� by I=14.82Z2.38. The ratio between the spherical cellu-
lar model results and the experimental data is fitted fairly
well by the ratio =1.55Z1/2, again except for Z=1

VI. CONCLUSIONS

Remember that it is a density derivative that leads to the
pressure �2.4�. So, since the pressure comes out right in this
model for high density �see Fig. 2�, the derivative of the
lowest � needs to be higher, so that the pressure is also
higher. The location of this higher pressure is illustrated in
Fig. 8 and the discussion of that figure. I conclude, in line
with textbook thinking, that the intra-atom, independent elec-
tron approximation does not provide an adequate wave func-
tion in the low-density, low-temperature range.

There is, however, a region in which the spherical cellular
model is valid within, say 5%, as reported by Baker and
Johnson �24�, who compared the results with the series ex-
pansion in the electric charge. The comparison is not in the
region to be significantly affected by the correction �3�. They
obtained the following results. There is a good comparison
when

y � 0.6
 2

1 + Z
�1/12 �1/9

Z1/12, � � �1 = 0.486 565 2
 2Z

1 + Z
�3/4

,

y � 0.65
�2/9

Z1/4 , �1 � � � �2 = 1052.2742
 2Z

1 + Z
�3/4

,

y � 0.3
1 + Z

2
�1/12 �3/9

Z1/4 , �2 � � � 2.7 
 104
 2Z

1 + Z
�3/4

.

�6.1�

The implication of these results is illustrated in Fig. 15. The
spherical cellular model compares well with the series ex-
pansion above and to the right of the long-dashed curve. A
comparison of the results of Figs. 6 and 14 suggests that
good results for the spherical cellular model are probably
obtained for densities a couple of orders of magnitude
smaller than those indicated in Fig. 15. The authors of �24�
indicate a very conservative approach.

I conclude that the spherical cellular model should give a
reasonable approximation away from the two-phase region,
the nonthermodynamic region, the region in which there is
the formation of molecules, and of course the region of sol-
ids.
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FIG. 14. Comparison of the single-electron potential given by
the spherical cellular model and the analytical result for a uniform
electron density.

( )

FIG. 15. The region above and to the right of the long dashed
line is where the spherical cellular model agrees with the series
results within 5%. The nonthermodynamic and the two-phase re-
gions are also shown for potassium.
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